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A general analysis of tunneling in a one-dimensional heterojunction is given. The analysis
is given in terms of a generalization of the WKB theory specifically developed to apply to po-
tentials which, as x tends to +«, tend to periodic functions of position, rather than to con-
stants. The theory is particularly suited for narrow junctions. The tunneling probability is
shown to factor into a bulk factor which is proportional to the product of the group velocities
in the periodic potentials on both sides of the junction, and into a barrier factor. The latter
depends primarily on solutions of the barrier Hamiltonian, and only for a thick junction may

it be approximated by a simple exponential.

I. INTRODUCTION

We consider the tunneling between two different
one-dimensional periodic potentials which are
joined smoothly. We assume that the transition
from one (perturbed) periodic potential to the other

is primarily localized in a relatively narrow region,

The potential in this “junction” may differ signif-
icantly from either of the periodic potentials.
That is, we assume that the continuously differen-
tiable potential V(x) can be decomposed into three
terms,

Vx)=6(-x+X;)Vi(x) +0(x =X, )V, (x)+V'(x) . (1.1)

Here, V’(x) is appreciable only in the junction
proper, X,<x <X,, and vanishes like |x |~ ®*" ag
Ix] tends to infinity.® Vi, .(x) are two distinct
periodic potentials,

VI,T(x):Vl,r(x+mZ,r) ) (1-2)
whose mean values are

— a

V,,rza;’lr fol,fvl’,(x)dx . (1.3)

In our analysis we require an approximation of
the linearly independent solutions of the Hamilton-
ian outside the junction. The solutions which we
derive, in Sec. II, represent a proper generaliza-
tion of the ordinary WKB functions,

By o) =[QW) ]2 exp[+i [ Qlxy)dx,] ,  (1.4)

QW) =[E -V(x)]? . (1.5)

Such a generalization is necessary because our po-
tential violates the conditions under which the or-
dinary WKB approximation is valid.? 3 One pos-

2

sible way to overcome this difficulty is to estimate
the rapidly varying periodic components of the po-
tential by means of the effective Hamiltonian the-
ory, and to apply the ordinary WKB approximation
to the effective Hamiltonian E(-iv)+ V'(x). %5
However, the effective Hamiltonian theory was
developed for problems involving a single periodic
potential: Thetheoryleads to conceptual and math-
ematical difficulties when it is applied to problems
such as ours, involving several periodic poten-
tials.® We therefore chose to develop a generaliza-
tion of the WKB approximation which is explicitly
valid when

lim V)=V, (x)=V, (x+na, 1),

X &%

and consequently does not have to involve the ef-
fective Hamiltonian theory.

Our theory is based on an adaptation of the tech-
nique of “variation of parameters” for the solution
of inhomogenous differential equations.” The pro-
cedure is outlined in Sec. I A below. In the course
of this outline, we also introduce the notation to be
used in the remainder of this paper. In Sec. III,
we discuss the joining relations appropriate for
our generalization of the WKB theory. The entire
theory is then applied, in Sec. IV, to calculate the
transmission coefficient for a heterojunction. It
is shown that this quantity is always proportional
to the product of the group velocities in the two
periodic potentials, divided by the product of the
extended wave vectors which characterize the two
asymptotic states. This result contradicts the
conclusion of Harrison® about the energy depen-
dence of the transmission coefficient within a
(generalized) WKB theory. Our results are sum-
marized and interpreted in Sec. V.
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A. WKB Approximation from a “Variation of Parameters”
Point of View

The solutions of
(5 — E — (7%/2m) €(x)] =0

can be represented in terms of two linearly inde-
pendent solutions ¥; 2(x) of

(G -E}=0 ,

and a pair of “envelope functions” ay, »(x) such that

(1.6)

(1.7)

¥(x) Pilx)  Pulw) a;(x) )

= . (1.8)
a4 a0 ase) |~ |
o)\ 0 )
The functions al,z(x) satisfy a pair of coupled first-
order differential equations, whose general solu-
tion can be'writt_gn in terms of their fundamental
solution matrix T(x,x’) and the values of ay, 5(x) at
the arbitrary fixed point x =x’,

@) (1.9)

az(x) az(x ')

The T matrix T(x,x') satisfies the integral equation

Toe, ) =T+ [ M)T0y, 2, (1.10)
where
M= (), (), (x) [ W]
Ly, (x)[zplz - wz(x)Ep ;(x)]_l , (1.11)

and W is the x-independent Wronskian determinant
of §,(x) and ¥,(x). Combining Egs. (1.8) and (1.9),
we obtain the matrix equation

() =W, (x), ()T (x, x") E')

where W is the Wronskian matrix of Py and P,.
Froman and Froman® have shown that the WKB
theory can be formulated as a special case of the
preceding analysis, in which the model Hamiltonian
is chosen so that

(1.12)

| T45(, %) = 8;;| < Ay{exp[Bo(=,x)] -1} if x>X,
(1.13)
and
| 755(x, =) =8|

< Cylexp[Do(x, )] -1} if x< X, .
(1.14)

Here A;;, B, C;;, and D are appropriate positive
constants,

5(x,x')=f: |q(x1)€(x,)ldx1 ’ (1.15)

where ¢(x) is an appropriate local wave vector, and

lim 6(o,x)=0= lim &(x,—-%) . (1.16)

X, <x~® Xl Sx w®
Equations (1.13)—(1.16) specify bounds on T which
imply that for x >X, or x<X,; this matrix may be
approximated by a unit matrix. The approxima-
tion involves an error whose leading term is pro-
portional to the “error integrals,” 86(», x) and
8(x, —»). That is, over these intervals the linear-
ly independent solutions of ¢~ E may be approxi-
mated by ¥; and ¥,. The error involved in this ap-
proximation can be estimated with the help of Eqs.
(1.13)-(1.15). This error increases as x tends to
X,(X,) from below (above), and X, , are the upper
(lower) boundaries of the intervals over which the
error is acceptable. As a rule, the interval X,
<x <X, contains one or more points at which €(x)
diverges. In the neighborhood of these classical
turning points, the approximation fails completely.
Although the integral equation (1.10) is singular
at the turning points, the matrix T(X,, X,) exists.
Consequently Eq. (1.12) can still be used to rep-
resent ¥(x >X,) in terms of ¥(x<X;). The last two
assertions can be proved by the following argument:
Let the matrix R(x,r’) be the fundamental solution
matrix of the Schrodinger equation

9

d

. ¥

dxq’ _ 0 1 (1.17)
a2 = 2 d ’ .1
W‘I’ "_h"r [E - V(x)] 0 dx

which we can rewrite as
d - - —
——T=AlX)¥(x) . (1.18)

dx
Then, the regularity of the matrix K(x) implies that
¥(x,) =R(X,, X,)¥(X,) . (1.19)
Combining Egs. (1.12)—(1. 14) and (1. 19) we now

have

WL(X,), $5(X,)A(X,)

=R(X,, X)W, (X,), 9D A(X,) . (1. 20)
Hence,
a(x,) = W, (X, )p,(x,)]
XR(X,, X)Wy (X,), (X NHE(X,) |
=T(X,, X,) 2(X;) (1.21)
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Evidently the matrix T(X,., X,) defined by the ex-
pression in the curly brackets represents a some-
what unusual formulation of the joining relations of
the WKB theory. Froman and Froman used special
analytic techniques to approximate T(X,, X;) with-
out reference to the matrix _ﬁ; we shall not be able
to follow such a procedure.

1. GENERALIZED WKB FUNCTIONS

In adapting the scheme described above to our
problem, we first have to find model Hamiltonians
for which Eqs. (1.13) and (1.14) are likely to be
valid. Here we shall be guided by physical intuition
and analogy to the ordinary WKB theory: (i) The
model Hamiltonians should tend to the periodic
Hamiltonians characteristic of the two bulk regions.
(ii) The solutions of the model Hamiltonians should
be essentially Bloch functions whose constant wave
vector is replaced by a local position-dependent
wave vector. The band-bending model suggests
that this wave vector should be defined by the im-
plicit equation

E —V,,,. - V,(x) _EI,T;V (q,’,(x))=0 .

Here, E,,,g,,(q) is the vth eigenvalue of the differen-
tial equation satisfied by the periodic factor of the
Bloch function b(x;q; ,,E) =& ulx; qy )

(2.1)

| £, 2, L2
ax T g YR

X (E =V - Q%y’-;t’)—zﬂ u(x;q;,,v)=0 . (2.2)

[Note that in Eq. (2.2) energies are referred to
'17,,,.] The concept of a local (position-dependent)
wave vector g(x) enters the ordinary WKB theory
as the physical interpretation of a Liouville trans-
formation of the independent variable, '°

x-w(x)= fx q(xy) dx, (2.3)
where
q(x)=Q(x)=[E - V(x)]"/? (2.4)
and
1imq(x)=q,.’, as x—=+% (2.5)
Hence,
limw(x)=q, ;x+w,; asx-x* . (2.6)

These observations combine with Eq. (1.4) to sug-
gest for the generalized WKB functions, which are
adapted to our problem, the form

By, 230 (0) =[g, ()] 2 e* N[ w(x) - w,]a;"; £q,, v},

(2.7
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w(x) = f; g, () dxy (2.8)

,
if x>X,, and an analogous form if x <X,. Here
q,,,(x) are those solutions of Eq. (2.1) which rep-
resent the extended (local) wave vectors, rather
than the conventional reduced wave vectors. This
assures that ¢, ;(x) has a positive lower bound
(v -1)n(a,, ;). The term u satisfies Eq. (2.2) in
the variable [w(x) —w,]g;*.

Our conjecture is borne out by an analysis based
on the model Hamiltonians ¥C,;, ;:

2ma? _ 7 \* _&
—_h’TL (E -3Cy;,) = (q,.(x/%)) d(x/a,)?

(oo | o)

(aim) # asrar| (%)
(2.9)

if x >X,. If x<X,;, an analogous expression holds
for 3C;,;.

Before we proceed with our analysis, we shall
briefly examine the significance of the factor
[7,)]™% in Egs. (1.4) and (2.7). This factor is
often interpreted merely as a normalization of the
WKB function in Eq. (1.4) so that it carries unit
flux. Consequently, itis argued that [Q(x)]-/2
should be identified with the inverse square root
of the “local velocity” (Z-'dE/dQ)-!/?. In the ordi-
nary WKB approximation this point of view is of no
particular consequence. But, whenever Q(x) is not
a constant multiple of the local group velocity, the
preceding argument is quite misleading: The Liou-
ville transformation of the independent variable,
defined by Eq. (2. 8), hastobe coupled to a trans-
formation of the wave function ¥(x)=[q(x)]"*/2
X 6(w(x)) to assure that the differential equation for
6(w) has the same form as that for ¥(x). More pre-
cisely, the Liouville transformation introduces a
term proportional to (d/dw) 6 into the differential
equation for 8(w). This term is eliminated by the
above transformation of the wave function, whereas,
the substitution ¥(x) = (% "1 dE/dq)~*'? 6 (w(x)) fails
to achieve this. The occurrence of a first deriva-
tive in the equation for (w) means that either the
model Hamiltonian or the error term €(x) has to
include this additional term. In the first case it is
trivial to check that the solution of the model Hamil-
tonian will be proportional to the term [(% ~'dE/dq)
Xq'l]"/ 2, indicating that our initial substitution
should have been ¥(x)=[q(x)]~/26.

In the second case the same model Hamiltonian
can be chosen for both substitutions. Let the solu-
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tion of the model Hamiltonian be 6(w). The gen-
erally larger error term €(x) implies that the ap-
proximation of ¥(x) by ¢ (x) = (%Z-1dE/dq)~'"26(w(x))
will generally be considerably poorer than that by
P(x)=[q(x)]-*"2 0(w(x)).

Finally, we note that the former, poorer, sub-
stitution will essentially reproduce Harrison’s re-
sults.

In Eq. (2.7) we introduced the dimensionless
space variables x/a, ; and wave vectors,

9,,:/a, a,, ;. ThlS enables us to express the er-
rors in terms of small dimensionless quantities.
Making the corresponding changes in Eq. (2.6), it
is easily verified that 1, 2;» are a pair of linearly
independent eigenfunctions of ¥,,,. The wave vec-
tor g,(x) defined by Eq. (2.1) satisfies Eqs. (2.4)
and (2. 5), because V'(x) vanishes at infinity. Con-
sequently,3C,., tends to the periodic Hamiltonian of
the bulk material on the right-hand side. Thus,
Egs. (2.7)-(2.9) conform to our intuitive require-
ments (i) and (ii).

On any interval on which [g,/q,(x/a,)]? is positive
and bounded, the solutions of

E-30%=0 (2.10)
and of
(-0 g <))
:(%Tzft—z;)z (B -30¥=0 (2.11)

are identical.

If we substitute Eq. (2.7) into Eq. (2.11) we ob-
tain an explicit expression for the dimensionless
quantities €1

()5 (et

(adan) #6)actar [+,
(2.12)

if ¥>X,. A similar expression holds for €,(x/a;)
if x< X;. Equations (2. 4) and (2. 5) imply that

lim e, > =0= lim €,—~ (2.13)

X =00 a, X = =00 1
However, this is not sufficient to prove that Eq.
(2. 6) represents the required generalization of the

WKB functions. To prove this assertion we sub-
stitute Egs. (2.6) and (2.12) into the general equa-
tion (1.10). It is then easy to show that the 7' ma-
trix for our problem satisfies an inequality such as
Eq. (1.13). [Each element in the sequence of suc-
cessive iterations of Eq. (1.10) can be bounded by
an element of a convergent sequence. ] Finally, an
examination of the error integral Eq. (1.15) indi-
cates that Eqs. (2.1), (2.3), and (2.12) are con-
sistent with Eq. (1.16), if and only if

lim x®*" y'(x)<C<w ,

oo
That is, if V'(x) vanishes too slowly at infinity, the
eigenfunctions of 3 cannot be approximated arbi-
trarily well by the Bloch functions for V, ,(x).
Hence, although 3, , tend to those Bloch functions,
the upper bound of the error does not tend to zero.

III. JOINING RELATIONS

Our discussion in Sec. II excluded the interval
X,<x<X,, where the relatively rapid transition
from one (perturbed) periodic potential V,(x) to
another (perturbed) periodic potential V,(x) occurs.
In this interval V'(x) is so strong that it is no lon-
ger meaningful to view V(x) as a perturbed periodic
potential. It follows that as this region is ap-
proached V’(x) tends to exhibit an appreciable vari-
ation over intervals of the order of interatomic
distances. That is, both V'(x) and dV'/dx~

(x)/a tend to become appreciable. No WKB-type
approximation should be expected to be valid under
such conditions. A qualitative analysis of Egs.
(1.15), (2.1), and (2. 12) leads to an intuitive pic-
ture of the deterioration of our generalization of
the WKB approximation as the transition region is
approached. From Eq. (2.1) we have

(qr l(x))

ay, ,(x) dx
_ 1 dV’(dEl,, >'l
4,0 dx dq e ()
vyl
-2 114, g, I
z—-‘;—‘;[E—V - V'] (3.1)

Here, v, ” ,(x) is the local group velocity. Equa-
tion (3.1) indicates that as the transition region is
approached, the rapid variation of V’(x) induces a
correspondingly rapid variation in the local wave
vector. And when the variation of V'(x) over a
period AV(x) approaches thelocalkinetic energy,
then both a®¢(x)=€(x/a) and the error integrals

8 (0, x) and 6(x, — =) tend to large values. Often the
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approximation fails, however, not primarily be-
cause of the increase in the absolute value of
dV'/dx but rather because of the gradual decrease in
the magnitude of the local group velocity. Justasin
the ordinary WKB theory, our approximation fails
at the classical turning points at which the local
group velocity vanishes: At these points both €(x)
and the error integral 5(w, x) and 6(— x, )
diverge. ®

In the following we assume that the number of the
classical turning points is even, and that all of
them are contained in the interval X, <x <X, which
also includes the transition region which was dis-
cussed above.!! That is, all singularities of
€,{x/a,) and of €,(x/a,) are included in X; < x < X,;
furthermore, the smallness of these quantities im-
plies that we may set

4 T(eo, x)~T if x> X,
an

Tlr, - w)~T if x<X,; . (3.2)

It follows from Egs. (3.2) that for x>X,, ¥ z,
are a pair of (approximate) linearly independent
eigenfunctions of 3¢. But the exact eigenfunction of
¢, ¥,(x), which for x>X, is approximated by ¢,
exists also for ¥<X,;. The approximation of ¥;(x),
when x< X; in terms of §;;, and 3,;, is indicated
by Eq. (1.21). Using a matrix notation these re-
marks may be summarized by the equation

(@y;,(x), l/)z;z(x))'_f_l(Xan)’ x<X; .

(3.3)
Here, the matrix T(X,, X;) is defined by the second
equation in Eq. (1.21). [Note that the quantities
#y,2(X,) in Eq. (1.21) are to be interpreted as
$1, 2;,(X,)and, similarly,; »(X;) is to be replaced
by ¢1,2;1(X1)-]

The joining relations, represented by the T ma-
trix T (X,,X,) depend explicitly on the fundamental
solution matrix ﬁ(x, x) of the full Schrédinger
equation in the junction X;<x<X,. Depending on the
nature of the problem, a variety of approximation
techniques can be applied to determine R. In this
paper we are concerned primarily with narrow
junctions, only a few atomic layers wide; this en-
ables us to consider approximations which are or-
dinarily impractical, in particular, the iterative
solution of the integral equation

(%,(e), ()= {‘z/)l;r(x), (), x> X,

R(x,, x,)=1+ fx"f K(x,)R(x,, X,)dx, , (3.4)
1

where X is defined by Egs. (1.17) and (1.18). Evi-

dently, thematrix A may also be approximated by

another matrix leading to a more tractable prob-

lem. This is indeed the procedure followed in the
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ordinary WKB theory, by one of the standard deri-
vations of the joining relations across a single
turning point: Here the exact solution of the Schro-
dinger equation with a linear potential is used as an
approximation which is valid in the neighborhood

of the turning point, where the WKB approximation
fails.

IV. TRANSMISSION FACTOR FOR A NARROW
JUNCTION

The transmission factor S is defined as the ratio
of the flux traveling outward on the right-hand side
to the incoming flux on the left-hand side, when
the solution on the right-hand side is a purely out-
going wave., If we assume that both on the right-
hand side and on the left-hand side the group veloc-
ities are positive, then it follows from Eq. (3.3)
that

SZEE_"_LLaq 1

7w Ly 4.1
a,q, Vg 1(T-Yyl% 7 (4.1)

where vg;,’,=dE,,,;,,/dq is the group velocity in the
periodic potential V, ,(v), and
(T-Yyu=[7Cx, X)) 151 . (4.2)

Using Eqgs. (1.21) and (2.6), we can express (T ~!),,
in terms of the WKB functions and the elements of
R. We now recall that

det[W(Z/)l;z(x), ng;,(x))]
=det[W(¥,;,(x), ¥,5; (x))]=const, x<X,
and hence can be evaluated in the limit x -~ oo,

where it reduces to (2mi/%)v,,/a;q,. Thus, we
obtain

. . 2m \ 2
5= Yar Uni <_> 4.3
a9y a9, n > ( )
where
S5t=| Rag b0 (X,) -2 45,1 (X))
b 22 Y157 " dx 231 1
d d
Ry 5 P13/ (X,) U 51 (X;) = Ryp dx ¥, (X,)
d 2
X T o, (X1)+ Rag ¥y (X)) 9, (X,)| (4.4)
and
R;;=R(X,, X,) . (4.5)

There are two points which should be emphasized
in the interpretation of Eqs. (4.3) and (4.4): First,
if R is indeed the exact fundamental solution (ma-
trix) on X, < x<X, then the only approximation in-
volved is the use of Eq. (3.2). That is, theerrors
are proportional to (the dimensionless quantity)
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8(0X,)+6(X;, ~ ) and can be controlled by the
choice of X, and X;. Second, the transitionprob-
ability always factors into a bulk factor which is
proportional to the product of the grvoup velocities
in the two periodic potentials, and a “barrier” fac-
tor S,. This second factor depends on the complete
solution of 3 in the junction. It may beapproximat-
ed either by approximating the Hamiltonian in the
junction or by using an approximate solution to the
full Hamiltonian. In either case an independent
estimate of the error is obtainable by standard
techniques applied to Eq. (3.4).

V. CONCLUSIONS

The tunneling between two different one-dimen-
sional periodic potentials was analyzed in terms
of a generalization of the WKB approximation spe-
cifically designedtoapply to problems in which, as
x tends to + =, the potential tends to periodic func-
tions of position rather than to constants. The ap-
proximation was used to calculate the probability
for tunneling from one periodic potential to the oth-
er across the junction. The transition probability
was found to be proportional to the product of the
group velocities in the two periodic potentials, and
inversely proportional to the product of the ex-
tended wave vectors which characterize the two
states involved in the transition.'? Our derivation
suggests that this result is exact in the sense that
it should hold also for the exact solution. Our re-
sult refutes the commonly accepted assertion of
Harrison that the WKB approximation excludes such
a dependence of the tunneling probability on the
group velocities.® Our tunneling probability clear-
ly exhibits the correct dependence on the energy
relative to extrema of the band structure on the
right and on the left. This obviates the need for
such ad hoc corrections to the WKB tunneling
probability as proposed by Conley and Mahan, 13

The second factor in the transmission coefficient
for the junction was expressed in terms of an ex-
plicit solution of the Schrédinger equation in the
junction. We were concerned with the case of a
narrow junction, and indicated how such a solution
might be determined. In the opposite limit, the
junction is so wide that one might approximate it
by a homogenous bulk material (i.e., a periodic
potential) joined by a pair of (narrow) transition
regions to the two periodic potentials on the right-
hand side and left-hand side. If these transition
regions were neglected one could adapt Kane’s
analysis of the internal field emission®* to deter-
mine the required (approximate) fundamental solu-
tion in the junction. It is easily seen that in this
case the familiar exponential tunneling probability
of internal field emission would enter our result.,
However, it would be multiplied by two different

T.E. FEUCHTWANG 2

preexponentials: first, the product of the group
velocities discussed above, and second, the
terms resulting from the approximate evaluation
of the factor S, defined in Eq. (4.4).

At this point it might be instructive to compare
our work with the analysis of Harrison in some
more detail. Harrison assumes that the effective-
mass function, which modulates the cell-periodic
function #, can be approximated by an appropriate
WKB function, which he writes in the form

yoc (B dE/dg)-" 2 expli [* q(x))dx,] .

This should be compared to our amplitude function

[q(0)]-* 2 expli [* qlx,)dx]

The formal justification given by Harrison for his
choice of a WKB function is sketchy and involves
several implicit assumptions which are not gen-
erally valid. The most crucial assumption is the
reality of the functions a(x) and B(x) which he de-
fines by the requirement that a(x)d¢/dx and
B(x)¢(x) are tobe continuous. It is easily seen that
a and B cannot generally be real. Physically,
Harrison identifies (improperly) the wave vector
in the preexponential factor with the particle vel-
ocity, while keeping the conventional interpreta-
tion of the wave vector in the exponential. There
is no point in repeating our discussion, following
Eq. (2.9), concerning the significance of the pre-
exponential factor in the WKB function. It is easy
to verify that Harrison’s amplitude function will
in general lead to a much poorer approximation of
the solutions of the full Schriddinger equation than
our WKB function. The notable exception to this
rule is the case where E(q)= (%g)?/2m*, with a
constant (g independent) effective mass m*. In
this case both Harrison’s and our amplitude func-
tions have the same form. Furthermore, if the
energy of an electron in the periodic potentials on
the right-hand side and on the left-hand side is
strictly quadratic in the wave vector, then our
transmission coefficient defined by Eq. (4.3) re-
duces to a constant (energy independent) multiple
of S,. If, in addition, we approximate S, by the
simple exponential tunneling probability for in-
ternal field emission, which was discussed above,
then our tunneling coefficient reduces to the ex-
pression quoted by Harrison.

To conclude, one should be cautious in inter-
preting the energy dependence of the tunneling
probability. First, innarrow junctions the prob-
ability is distinctly not a simple exponential.

And even when the junction is wide, and an ex-
ponential factor enters the probability, there are
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always energy-dependent preexponential factors
which cannot generally be dismissed.
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An extension of the present work to a three-
dimensional setting is being considered.
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The problem of ambipolar diffusion and drift of electrons and holes, in which the diffusivity
and mobility tensors for the two carrier species may be of different forms, is examined.
Problems of this type arise, for example, in studying the diffusion and drift of excess carrier
distributions in uniaxially stressed germanium and silicon as well as in certain naturally
anisotropic substances. General ambipolar transport equations are obtained in situations
where the quasineutrality approximation is justified. Solutions to these equations are quite
easily obtained in certain cases where particular simplifying assumptions can be made.
These solutions are explicitly obtained and the range of conditions under which they are ap-
plicable is outlined in detail. Certain other procedures have been employed to solve the
general problem in cases when these conditions are not satisfied. Such methods are usually
applicable only in cases involving rather special and restricted sample geometries. The
transformation properties of the various terms in the ambipolar transport equation are dis-
cussed in various situations of physical interest and importance.

I. INTRODUCTION

The ambipolar transport behavior of excess
carrier distributions in semiconductor crystals has
been discussed by Herring,! Shockley,? and van
Roosbroeck®; the most elegant and explicit treat-
ment of the subject is contained in a subsequent
article by the last author.* In this treatment the
influences which the diffusing electrons and holes

exert upon one another by virtue of their mutual
electrostatic attraction are taken into account in
an approximate way by assuming that the electro-
static forces are sufficient at all times to maintain
an approximate state of electrical neutrality
throughout the crystal. The electrons, whose mo-
bility is greater, are thus envisioned as pulling
the holes, whose mobility is less, along more
rapidly than they would otherwise travel, and being



